Equation Discovery Using Fast Function Extraction: a Deterministic Symbolic Regression Approach
نویسندگان
چکیده
منابع مشابه
Knowledge Discovery through Symbolic Regression with HeuristicLab
This contribution describes how symbolic regression can be used for knowledge discovery with the open-source software HeuristicLab. HeuristicLab includes a large set of algorithms and problems for combinatorial optimization and for regression and classification, including symbolic regression with genetic programming. It provides a rich GUI to analyze and compare algorithms and identified models...
متن کاملFast Function to Function Regression
We analyze the problem of regression when both input covariates and output responses are functions from a nonparametric function class. Function to function regression (FFR) covers a large range of interesting applications including timeseries prediction problems, and also more general tasks like studying a mapping between two separate types of distributions. However, previous nonparametric est...
متن کاملExpert Discovery: A web mining approach
Expert discovery is a quest in search of finding an answer to a question: “Who is the best expert of a specific subject in a particular domain within peculiar array of parameters?” Expert with domain knowledge in any field is crucial for consulting in industry, academia and scientific community. Aim of this study is to address the issues for expert-finding task in real-world community. Collabor...
متن کاملA Symbolic Approach to Near-Deterministic Surface Realisation using Tree Adjoining Grammar
Surface realisers divide into those used in generation (NLG geared realisers) and those mirroring the parsing process (Reversible realisers). While the first rely on grammars not easily usable for parsing, it is unclear how the second type of realisers could be parameterised to yield from among the set of possible paraphrases, the paraphrase appropriate to a given generation context. In this pa...
متن کاملFeature Extraction from Optimization Data via DataModeler's Ensemble Symbolic Regression
We demonstrate a means of knowledge discovery through feature extraction that exploits the search history of an optimization run. We regress a symbolic model ensemble from optimization run search points and their objective scores. The frequency of a variable in the models of the ensemble indicates to what the extent it is an influential feature. Our demonstration uses a genetic programming symb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fluids
سال: 2019
ISSN: 2311-5521
DOI: 10.3390/fluids4020111